3.334 \(\int \frac{x^4}{(d+e x) (a+c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=146 \[ \frac{a (a e+c d x)}{c^2 \sqrt{a+c x^2} \left (a e^2+c d^2\right )}-\frac{d \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{c^{3/2} e^2}+\frac{\sqrt{a+c x^2}}{c^2 e}-\frac{d^4 \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{e^2 \left (a e^2+c d^2\right )^{3/2}} \]

[Out]

(a*(a*e + c*d*x))/(c^2*(c*d^2 + a*e^2)*Sqrt[a + c*x^2]) + Sqrt[a + c*x^2]/(c^2*e) - (d*ArcTanh[(Sqrt[c]*x)/Sqr
t[a + c*x^2]])/(c^(3/2)*e^2) - (d^4*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/(e^2*(c*d^2
+ a*e^2)^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.312321, antiderivative size = 146, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.273, Rules used = {1647, 1654, 844, 217, 206, 725} \[ \frac{a (a e+c d x)}{c^2 \sqrt{a+c x^2} \left (a e^2+c d^2\right )}-\frac{d \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{c^{3/2} e^2}+\frac{\sqrt{a+c x^2}}{c^2 e}-\frac{d^4 \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{e^2 \left (a e^2+c d^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[x^4/((d + e*x)*(a + c*x^2)^(3/2)),x]

[Out]

(a*(a*e + c*d*x))/(c^2*(c*d^2 + a*e^2)*Sqrt[a + c*x^2]) + Sqrt[a + c*x^2]/(c^2*e) - (d*ArcTanh[(Sqrt[c]*x)/Sqr
t[a + c*x^2]])/(c^(3/2)*e^2) - (d^4*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/(e^2*(c*d^2
+ a*e^2)^(3/2))

Rule 1647

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[(d +
 e*x)^m*Pq, a + c*x^2, x], f = Coeff[PolynomialRemainder[(d + e*x)^m*Pq, a + c*x^2, x], x, 0], g = Coeff[Polyn
omialRemainder[(d + e*x)^m*Pq, a + c*x^2, x], x, 1]}, Simp[((a*g - c*f*x)*(a + c*x^2)^(p + 1))/(2*a*c*(p + 1))
, x] + Dist[1/(2*a*c*(p + 1)), Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*ExpandToSum[(2*a*c*(p + 1)*Q)/(d + e*x)^m +
 (c*f*(2*p + 3))/(d + e*x)^m, x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Pq, x] && NeQ[c*d^2 + a*e^2, 0] &
& LtQ[p, -1] && ILtQ[m, 0]

Rule 1654

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff
[Pq, x, Expon[Pq, x]]}, Simp[(f*(d + e*x)^(m + q - 1)*(a + c*x^2)^(p + 1))/(c*e^(q - 1)*(m + q + 2*p + 1)), x]
 + Dist[1/(c*e^q*(m + q + 2*p + 1)), Int[(d + e*x)^m*(a + c*x^2)^p*ExpandToSum[c*e^q*(m + q + 2*p + 1)*Pq - c*
f*(m + q + 2*p + 1)*(d + e*x)^q - f*(d + e*x)^(q - 2)*(a*e^2*(m + q - 1) - c*d^2*(m + q + 2*p + 1) - 2*c*d*e*(
m + q + p)*x), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, c, d, e, m, p}, x] && PolyQ[Pq
, x] && NeQ[c*d^2 + a*e^2, 0] &&  !(EqQ[d, 0] && True) &&  !(IGtQ[m, 0] && RationalQ[a, c, d, e] && (IntegerQ[
p] || ILtQ[p + 1/2, 0]))

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rubi steps

\begin{align*} \int \frac{x^4}{(d+e x) \left (a+c x^2\right )^{3/2}} \, dx &=\frac{a (a e+c d x)}{c^2 \left (c d^2+a e^2\right ) \sqrt{a+c x^2}}-\frac{\int \frac{\frac{a^2 d^2}{c d^2+a e^2}-a x^2}{(d+e x) \sqrt{a+c x^2}} \, dx}{a c}\\ &=\frac{a (a e+c d x)}{c^2 \left (c d^2+a e^2\right ) \sqrt{a+c x^2}}+\frac{\sqrt{a+c x^2}}{c^2 e}-\frac{\int \frac{\frac{a^2 c d^2 e^2}{c d^2+a e^2}+a c d e x}{(d+e x) \sqrt{a+c x^2}} \, dx}{a c^2 e^2}\\ &=\frac{a (a e+c d x)}{c^2 \left (c d^2+a e^2\right ) \sqrt{a+c x^2}}+\frac{\sqrt{a+c x^2}}{c^2 e}-\frac{d \int \frac{1}{\sqrt{a+c x^2}} \, dx}{c e^2}+\frac{d^4 \int \frac{1}{(d+e x) \sqrt{a+c x^2}} \, dx}{e^2 \left (c d^2+a e^2\right )}\\ &=\frac{a (a e+c d x)}{c^2 \left (c d^2+a e^2\right ) \sqrt{a+c x^2}}+\frac{\sqrt{a+c x^2}}{c^2 e}-\frac{d \operatorname{Subst}\left (\int \frac{1}{1-c x^2} \, dx,x,\frac{x}{\sqrt{a+c x^2}}\right )}{c e^2}-\frac{d^4 \operatorname{Subst}\left (\int \frac{1}{c d^2+a e^2-x^2} \, dx,x,\frac{a e-c d x}{\sqrt{a+c x^2}}\right )}{e^2 \left (c d^2+a e^2\right )}\\ &=\frac{a (a e+c d x)}{c^2 \left (c d^2+a e^2\right ) \sqrt{a+c x^2}}+\frac{\sqrt{a+c x^2}}{c^2 e}-\frac{d \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{c^{3/2} e^2}-\frac{d^4 \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{c d^2+a e^2} \sqrt{a+c x^2}}\right )}{e^2 \left (c d^2+a e^2\right )^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.514877, size = 179, normalized size = 1.23 \[ \frac{\frac{e \left (2 a^2 e^2+a c \left (d^2+d e x+e^2 x^2\right )+c^2 d^2 x^2\right )}{c^2 \sqrt{a+c x^2} \left (a e^2+c d^2\right )}-\frac{\sqrt{a} d \sqrt{\frac{c x^2}{a}+1} \sinh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a}}\right )}{c^{3/2} \sqrt{a+c x^2}}-\frac{d^4 \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{\left (a e^2+c d^2\right )^{3/2}}}{e^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^4/((d + e*x)*(a + c*x^2)^(3/2)),x]

[Out]

((e*(2*a^2*e^2 + c^2*d^2*x^2 + a*c*(d^2 + d*e*x + e^2*x^2)))/(c^2*(c*d^2 + a*e^2)*Sqrt[a + c*x^2]) - (Sqrt[a]*
d*Sqrt[1 + (c*x^2)/a]*ArcSinh[(Sqrt[c]*x)/Sqrt[a]])/(c^(3/2)*Sqrt[a + c*x^2]) - (d^4*ArcTanh[(a*e - c*d*x)/(Sq
rt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/(c*d^2 + a*e^2)^(3/2))/e^2

________________________________________________________________________________________

Maple [B]  time = 0.239, size = 396, normalized size = 2.7 \begin{align*}{\frac{{x}^{2}}{ce}{\frac{1}{\sqrt{c{x}^{2}+a}}}}+2\,{\frac{a}{{c}^{2}e\sqrt{c{x}^{2}+a}}}+{\frac{dx}{c{e}^{2}}{\frac{1}{\sqrt{c{x}^{2}+a}}}}-{\frac{d}{{e}^{2}}\ln \left ( x\sqrt{c}+\sqrt{c{x}^{2}+a} \right ){c}^{-{\frac{3}{2}}}}-{\frac{{d}^{2}}{{e}^{3}c}{\frac{1}{\sqrt{c{x}^{2}+a}}}}-{\frac{{d}^{3}x}{{e}^{4}a}{\frac{1}{\sqrt{c{x}^{2}+a}}}}+{\frac{{d}^{4}}{{e}^{3} \left ( a{e}^{2}+c{d}^{2} \right ) }{\frac{1}{\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}}+{\frac{{d}^{5}xc}{{e}^{4} \left ( a{e}^{2}+c{d}^{2} \right ) a}{\frac{1}{\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}}-{\frac{{d}^{4}}{{e}^{3} \left ( a{e}^{2}+c{d}^{2} \right ) }\ln \left ({ \left ( 2\,{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(e*x+d)/(c*x^2+a)^(3/2),x)

[Out]

1/e*x^2/c/(c*x^2+a)^(1/2)+2/e*a/c^2/(c*x^2+a)^(1/2)+d/e^2*x/c/(c*x^2+a)^(1/2)-d/e^2/c^(3/2)*ln(x*c^(1/2)+(c*x^
2+a)^(1/2))-d^2/e^3/c/(c*x^2+a)^(1/2)-d^3/e^4*x/a/(c*x^2+a)^(1/2)+d^4/e^3/(a*e^2+c*d^2)/((d/e+x)^2*c-2*c*d/e*(
d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2)+d^5/e^4/(a*e^2+c*d^2)/a/((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2)*
x*c-d^4/e^3/(a*e^2+c*d^2)/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*(d/e+x)+2*((a*e^2+c*d^2)/e
^2)^(1/2)*((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2))/(d/e+x))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(e*x+d)/(c*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 31.8025, size = 3092, normalized size = 21.18 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(e*x+d)/(c*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

[1/2*((a*c^2*d^5 + 2*a^2*c*d^3*e^2 + a^3*d*e^4 + (c^3*d^5 + 2*a*c^2*d^3*e^2 + a^2*c*d*e^4)*x^2)*sqrt(c)*log(-2
*c*x^2 + 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + (c^3*d^4*x^2 + a*c^2*d^4)*sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x - a
*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 - 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2
 + 2*d*e*x + d^2)) + 2*(a*c^2*d^4*e + 3*a^2*c*d^2*e^3 + 2*a^3*e^5 + (c^3*d^4*e + 2*a*c^2*d^2*e^3 + a^2*c*e^5)*
x^2 + (a*c^2*d^3*e^2 + a^2*c*d*e^4)*x)*sqrt(c*x^2 + a))/(a*c^4*d^4*e^2 + 2*a^2*c^3*d^2*e^4 + a^3*c^2*e^6 + (c^
5*d^4*e^2 + 2*a*c^4*d^2*e^4 + a^2*c^3*e^6)*x^2), -1/2*(2*(c^3*d^4*x^2 + a*c^2*d^4)*sqrt(-c*d^2 - a*e^2)*arctan
(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)) - (a*c^2*d^
5 + 2*a^2*c*d^3*e^2 + a^3*d*e^4 + (c^3*d^5 + 2*a*c^2*d^3*e^2 + a^2*c*d*e^4)*x^2)*sqrt(c)*log(-2*c*x^2 + 2*sqrt
(c*x^2 + a)*sqrt(c)*x - a) - 2*(a*c^2*d^4*e + 3*a^2*c*d^2*e^3 + 2*a^3*e^5 + (c^3*d^4*e + 2*a*c^2*d^2*e^3 + a^2
*c*e^5)*x^2 + (a*c^2*d^3*e^2 + a^2*c*d*e^4)*x)*sqrt(c*x^2 + a))/(a*c^4*d^4*e^2 + 2*a^2*c^3*d^2*e^4 + a^3*c^2*e
^6 + (c^5*d^4*e^2 + 2*a*c^4*d^2*e^4 + a^2*c^3*e^6)*x^2), 1/2*(2*(a*c^2*d^5 + 2*a^2*c*d^3*e^2 + a^3*d*e^4 + (c^
3*d^5 + 2*a*c^2*d^3*e^2 + a^2*c*d*e^4)*x^2)*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) + (c^3*d^4*x^2 + a*c^2
*d^4)*sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 - 2*sqrt(c*d^2 +
a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) + 2*(a*c^2*d^4*e + 3*a^2*c*d^2*e^3 + 2*a^3*e^
5 + (c^3*d^4*e + 2*a*c^2*d^2*e^3 + a^2*c*e^5)*x^2 + (a*c^2*d^3*e^2 + a^2*c*d*e^4)*x)*sqrt(c*x^2 + a))/(a*c^4*d
^4*e^2 + 2*a^2*c^3*d^2*e^4 + a^3*c^2*e^6 + (c^5*d^4*e^2 + 2*a*c^4*d^2*e^4 + a^2*c^3*e^6)*x^2), -((c^3*d^4*x^2
+ a*c^2*d^4)*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2
 + (c^2*d^2 + a*c*e^2)*x^2)) - (a*c^2*d^5 + 2*a^2*c*d^3*e^2 + a^3*d*e^4 + (c^3*d^5 + 2*a*c^2*d^3*e^2 + a^2*c*d
*e^4)*x^2)*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) - (a*c^2*d^4*e + 3*a^2*c*d^2*e^3 + 2*a^3*e^5 + (c^3*d^4
*e + 2*a*c^2*d^2*e^3 + a^2*c*e^5)*x^2 + (a*c^2*d^3*e^2 + a^2*c*d*e^4)*x)*sqrt(c*x^2 + a))/(a*c^4*d^4*e^2 + 2*a
^2*c^3*d^2*e^4 + a^3*c^2*e^6 + (c^5*d^4*e^2 + 2*a*c^4*d^2*e^4 + a^2*c^3*e^6)*x^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{\left (a + c x^{2}\right )^{\frac{3}{2}} \left (d + e x\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(e*x+d)/(c*x**2+a)**(3/2),x)

[Out]

Integral(x**4/((a + c*x**2)**(3/2)*(d + e*x)), x)

________________________________________________________________________________________

Giac [B]  time = 1.22742, size = 404, normalized size = 2.77 \begin{align*} \frac{2 \, d^{4} \arctan \left (-\frac{{\left (\sqrt{c} x - \sqrt{c x^{2} + a}\right )} e + \sqrt{c} d}{\sqrt{-c d^{2} - a e^{2}}}\right )}{{\left (c d^{2} e^{2} + a e^{4}\right )} \sqrt{-c d^{2} - a e^{2}}} + \frac{d e^{\left (-2\right )} \log \left ({\left | -\sqrt{c} x + \sqrt{c x^{2} + a} \right |}\right )}{c^{\frac{3}{2}}} + \frac{{\left (\frac{{\left (c^{4} d^{4} e^{5} + 2 \, a c^{3} d^{2} e^{7} + a^{2} c^{2} e^{9}\right )} x}{c^{5} d^{4} e^{6} + 2 \, a c^{4} d^{2} e^{8} + a^{2} c^{3} e^{10}} + \frac{a c^{3} d^{3} e^{6} + a^{2} c^{2} d e^{8}}{c^{5} d^{4} e^{6} + 2 \, a c^{4} d^{2} e^{8} + a^{2} c^{3} e^{10}}\right )} x + \frac{a c^{3} d^{4} e^{5} + 3 \, a^{2} c^{2} d^{2} e^{7} + 2 \, a^{3} c e^{9}}{c^{5} d^{4} e^{6} + 2 \, a c^{4} d^{2} e^{8} + a^{2} c^{3} e^{10}}}{\sqrt{c x^{2} + a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(e*x+d)/(c*x^2+a)^(3/2),x, algorithm="giac")

[Out]

2*d^4*arctan(-((sqrt(c)*x - sqrt(c*x^2 + a))*e + sqrt(c)*d)/sqrt(-c*d^2 - a*e^2))/((c*d^2*e^2 + a*e^4)*sqrt(-c
*d^2 - a*e^2)) + d*e^(-2)*log(abs(-sqrt(c)*x + sqrt(c*x^2 + a)))/c^(3/2) + (((c^4*d^4*e^5 + 2*a*c^3*d^2*e^7 +
a^2*c^2*e^9)*x/(c^5*d^4*e^6 + 2*a*c^4*d^2*e^8 + a^2*c^3*e^10) + (a*c^3*d^3*e^6 + a^2*c^2*d*e^8)/(c^5*d^4*e^6 +
 2*a*c^4*d^2*e^8 + a^2*c^3*e^10))*x + (a*c^3*d^4*e^5 + 3*a^2*c^2*d^2*e^7 + 2*a^3*c*e^9)/(c^5*d^4*e^6 + 2*a*c^4
*d^2*e^8 + a^2*c^3*e^10))/sqrt(c*x^2 + a)